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Abstract. An upper bound of the norm of the error vector after n time steps is 
2(n + 1)(n + 2) |* jj . For the explicit scheme 6* = jj = 3 X ' X 10' 
where p is the number of decimals carried in the computations. For the implicit 
scheme 6* = 11 j 11 is an upper bound of the errors which arise both from using 
approximations to A-1 and A-1B in the determination of Uk+1 from equation (6*) 
and from rounding off the values of the products and quotients involved in the 
computation of the components of Uk+1 . 

Consider the numerical treatment of the differential equation of wave motion 

a2 2 2 
U = cd 0 < < a, t > O 

the solution of which is required to satisfy the following initial and boundary 
conditions 

(2) u(x, 0) = f(x) 

(3) Ut(x, 0) = g(x) 

(4) u(O, t) = u(a, t) = 0. 

With the differential equation (1) we will associate either of the following two dif- 
ference analogs [1] 

(5) Uhk+l - 2Uh, k + Uh, k1 = R2(Uh lk - 2Uh,k + Uh+lk) 

(6 ) Uh,k+l- 2Uh, k + Uh, k-1 = 2 (Uh-l, k+l- 2Uh, k+1 + Uh+l, k+l 

+ Uh-1, k-1- 2Uh,k-1 + Uh+l ,k-1) 

where R = cAt/Ax and Uh,k = u(hAx, kAt) with (M + 1)Ax = a. 
The difference counterpart of (3) will be taken in the form 

Uh,1 - Uho = q(hAx); 
At 

whence 

(7) Uh,l = Uho + g(hAx)At = f(hAx) + g(hAx)At. 

The difference equations (5) and (6) may be written in the compact forms 

(5*) Uk+j = Auk - Uk-1 

(6*) Auk+1 = 4Uk + BUk-1 
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In (5*) A is a tridiagonal matrix whose elements on the principal diagonal are 
= 2(1 - R2) and whose elements off the principal diagonal are = R2 and uk is the 
vector whose components are the values of u(x, t) at time t = kAt at the lattice 
points x = hAx, h = 1, 2, 3 * A . . In (6*) A is a tridiagonal matrix whose elements 
on the principal diagonal are = 2(1 + R2) while the elements off the principal 
diagonal are = -R2 and B is a tridiagonal matrix whose elements on the principal 
diagonal are = -2(1 + R2) while the elements off the principal diagonal are 

,2 

Consider first the explicit difference scheme (5*). Since both uo and ul are known, 
(5*) will yield in succession 2, XU3 * . . Specifically, 

(12 = Au, - uo 

(8) u= Au2-u1 

Un = Aun1 - Un-2. 

It is reasonable to assume that the components of uo are exact while those of ul, 

obtained from (7), have been rounded off to the number of decimal places to be 
carried in the computations. Let ul* denote the vector whose components are the 
rounded off values of the components of ul . It is then easily seen that we introduce 
two types of errors in the evaluation of U2 . A first error is due to using ul* in lieu 
of ul . A second error is introduced as a result of rounding off of the values of the 
products involved in the expression of Uh,k+l obtained from (5) to the number of 
decimal places carried in the computations. Thus, in lieu of the exact vector 12, 

the first step in the sequence of operations (8) yields the vector u2* = Au,* - 

Uo + 52 where 52 is the error vector whose components are the round-off errors just 
discussed. Similarly, error vectors are introduced in each of the successive steps in 
the sequence of operations (8). Thus 

(U2* = Au,*- Uo + 52 

A N ~~~~U3* = AU2* - U* + 6.3 

pu*=Au*_ -Un-2 n 

If we put 

(10) En = un- Un 

then from (8) and (9) it follows that 

(11) En= AEn-1 - En-2 + n. 

In entirely similar manner it may be shown that the counterpart of (11) for the 
implicit scheme (6*) is 

(12) En= 4A-'En1 + A-'BEn-2 + An. 

There is, however an important distinction between (11) and (12); whereas in 
(11) the components of An are round-off errors as above explained, in (12) the 
components of fn are the aggregate of the errors arising both from using approxi- 
mations to A-' and A-1B in the determination of Uk+1 and the round-off errors 
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introduced as a result of rounding-off the values of the products and quotients in- 
volved in the computation of the components of uk+l . 

The error equations (11) and (12) are of the form 

(13) En= MEn-1 + NEn2 + n. 

If in (13) we put in succession n = 2, 3, 4, * and write 51 for E1 it may be shown 
by induction that 

(14) En = Pn-l(M, N)A1 + Pn-2(M, N)52 + ... Bn 

or 
n 

(14*) E= Pp(M, N)6n&p 

where 

(15) Pn(M, N) = Mn + C1_lMn-2N 
+ c2 Mn-4N2 + ... G_.Mn-8 ? ... 

or 
(n/2) 

(15*) Pn(M, N) E c Mn 2mn 
s=8 

where (n/2) denotes the largest integer in n/2, where Cn? = 1 and Cmn denote the 
binomial coefficient m(m - 1)(m - 2) ... (m - n + 1)/n!. 

We shall prove that if M and N have the same eigenvectors, then 

(16) II Pp(M, N)n-p 11 ' !1 an-p| (p + 1) 

where for any M-dimensional vector A, its norm 11 is defined by 

(17) (Oh = = = 

the Oh's being the components of 4, 
provided that the roots of the quadratic equation 

(18) x - X - cu = 0 

where the Xr's and Mr's, the eigenvalues of M and N respectively, are either 
numerically equal to or smaller than unity (if real) or have a modulus equal to or 
smaller than unity (if complex). Indeed, let 

M 

(19) =n-p ar Wr 
r=1 

where the wr's are the normalized eigenvectors of the matrices M and N. From 
(19) and (14*) we get 

(p/2) M 

(20) Pp(M, N) = Z ZE Cs-,s af-P)MP-2SN8wr 
s=o r=l 
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But 

MP-28N W = MP 2MTrWr = \ ,-28IAWr ; 

whence 
M (p/2) 

P (My N) = a (-p) Z Ad Ca8 sP-2s 
s 

r=1 8=0 

(21) M 

E Z r(p)a cl! )Wr (say). 
r=1 

It may be proved by induction that 
(p/2) p+l p+l p 

(22 ) IO(P) = Z C X 28pf = r ,-= = Z X1 r X2,r 

8=0 X1i,r X2, r 0=0 

where X1,r and X2,r are the roots of the quadratic equation (18). From (22) it is 
clear that if these roots are numerically smaller than unity then 

(23) 1 r(p) |< P + 1; 

and furthermore 1r(P) -O 0 as p -* oo. In view of (23), (21) yields 

11 Pp(M, N)E~n~p II = I [I [r(p)]2[ (n-p)]2 < (p + 1) E n-p) 2 

or 

(16) J Pp(M, N)np 11 ? (p + 1)|| an-p 11 . 

From (14*) the Minkowski inequality yields 
n 

(24) 11En 11 ? 
E 11 Pp(M, N)B 11 

p=O 

whence, in view of (16) 
n 

(25) jEn ? < (p + 1) 5n-p11; 
P=O 

and a fortiori 

(25* 1lEn l _|| * 1 E p +1)n (n + 1) (n + 2) a 

P=o 2 

where 116*11 is the largest of the sequence 11 a,1 2 1n 11 If P* denotes 
an upper bound of the components of all the vectors 5p it is readily seen that 

Furthermore, since 

M 1/2 

En = E (Enh)2} 

where the Enh's are the components of En X it is clear that the maximum of any of 
the components is obtained by assuming that all but one of the components are = 0. 
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Calling the maximum value of the components En* we finally get 

(26) E_* < 1 (n + 1) (n + 2) VM*. 

The second member of (26) is an upper bound of the round-off errors for both the 
explicit analog (5) and the implicit analog (6). 

In the case of the explicit scheme (5) the matrix M of (13) is the matrix A 
appropriate to (5) while the matrix N of (13) is = -I where I is the M X M 
identity matrix. The eigenvalues of A are known [2] to be 

(27) Xr = 2-4R2 cos 2(M + 1) 

The eigenvalues of -I are clearly = -1. Thus the quadratic equation (18) be- 
comes 

(28) x 2-4R COS2(M + 1)]x+1 =0. 

It is clear that if the roots of (28) were real, one would have to be larger than 
unity, since the products of the roots is = 1. Under these conditions 1r(p) as de- 
fined in (22) would not be bounded as p >oo and the difference scheme (5) could 
not be stable. Thus the roots of (28) must be complex, in which case the modulus 
of the roots is = 1 and 1r(P) -< p + 1. 

An upper bound of the round-off errors after n time steps is then given by 

E.* = 2 (n + 1) (n + 2) /M5* 

where 6* = 3 X 2 X 10 ' if the computations are carried to p decimal places. 
In the case of the implicit scheme (6) matrices M and N of (13) are A-' and A-'B 
respectively where the matrices A and B appropriate to (6) have been defined 
earlier. 

It can be easily shown that the matrices A-' and A-'B have the same eigen- 
vectors, as required in the above developments [2, p. 20], and that their eigen- 
values are 

i 2 2 rir 
(29) Xr = 2/(1 + 2R COS +r 1 Xr 2n cos 2(M + 1)P 

Thus the quadratic equation (18) becomes 

(30) X2- 
2 x+ =I0. 

1 + 2R2 cos2 r+r 

Clearly the roots of (30) must be complex. This leads to the condition 

1/{1 + 2R2 cos [rir/2(M + 1)]} < 1 

which is evidently satisfied for any value of R. Thus the difference scheme (6) is 
unconditionally stable. Furthermore, and for the same reason as above, 

Orr(p) ?< p + 1. 

An upper bound of the round-off errors after n time steps is, therefore, once more 
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given by 

(26*) E* < '(n + 1)(n + 2)xN/M-*. 

In this case, however, as previously mentioned 5* is an upper bound of the errors 
which arise both from the use of approximations to A-' and A-'B in lieu of exact 
matrices and from the process of rounding-off the values of the products and quo- 
tients involved in the evaluation of the components of Uk+l . Clearly 6P depends on 
the specific scheme for solving the system of equations (6) with h = 1, 2, 3, * M 
for the Uh,k+l'S. 

In order to estimate P* for the implicit scheme we note that the counterpart of 
the typical equation (9) is 

Uk* = 4A u* 1 + A 'Bu*2 + 
5 

whence 

Auk* = 4u* 1 + Bu*2 + Ask . 

Let Rk denote the known vectors Auk* - 4u*1 - BUk*2. Then Ask = Rk and 
therefore 5k = A-'Rk. Since the eigenvalues of A are known to be larger than 2, 
it follows that the eigenvalues of A-' are smaller than unity and therefore 

11 fk l| = || ARk || -< || Rk || _ 

We conclude that * in equation (26*) is the largest of the norms of the n "residual 
vectors" Rk = Auk* - 4u - Buk2 These vectors will depend, of course, on 
the specific method of computing the Uk+l's from (6). 

A discussion of two alternative schemes for solving implicit systems of equations 
of the type (6) is contained in [3]. 
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